
Design and Theory
of Algorithms

Lecture 01

Dr. Ahmed Hassan

Computer Sc ience Department

1

Books

2

PowerPoint
http://www.bu.edu.eg/staff/ahmedaboalatah14-courses/14767

3

Introduction

4

Outline
Definitions

Algorithms

Problems

Course Objectives

Analysis of Algorithms

Examples

5

What is an Algorithm?

Well-defined computation procedure that takes some value,
or a set of values as input and produces some value or a set of
values as output

An algorithm is the thing that stays the same whether the
program is in C,BASIC, etc.

An algorithm has to solve a general, specified problem.

What is a problem?
Problem Specification
◦ Specify what a typical input instance is
◦ Specify what the output should be in terms of the input

instance

Example: Sorting
◦ Input: A sequence of “n” numbers a1…an

◦ Output: the permutation (reordering) of the input
sequence such that as(1) as(2) … as(n) .

Types of Problems
Search: find X in the input satisfying property Y

Structuring: Transform input X to satisfy property Y

Construction: Build X satisfying Y

Optimization: Find the best X satisfying property Y

Decision: Does X satisfy Y?

Adaptive: Maintain property Y over time.

Max

Sort

Scheduling

TSP

Odd or Even

Insert in sorted list

Two desired properties of algorithms
Correctness
◦ Always provides correct output when presented with legal input

Efficiency
◦ What does efficiency mean?

Example: Odd Number
Input: A number n
Output: Yes if n is odd, no if n is even
Which of the following algorithms solves Odd Number best?

• Count up to that number from one and alternate
naming each number as odd or even.

• Factor the number and see if there are any 2 in the
factorization.

• Keep a lookup table of all numbers from 0 to the
maximum integer.

• Look at the last bit (or digit) of the number.

Course Objectives
1. Learning classic algorithms

2. How to devise correct and efficient algorithms
for solving a given problem

3. How to express algorithms

4. How to analyze algorithms

5. How to prove (or at least indicate) no correct,
efficient algorithm exists for solving a given
problem

How to devise algorithms
Something of an art form

We will describe some general techniques and try to
illustrate when each is appropriate

Expressing Algorithms
Implementations

Pseudo-code

English

Verifying algorithm
correctness

Proving an algorithm generates correct output for all
inputs

One technique covered in textbook
◦ Loop invariants

Examples

15

Problem 1
Write an algorithm to find set of prefix sums S = {s1,
s2, …, sn } for a set of “n” numbers A = {a1, a2, a3, …,
an }

(hint: prefix sum).

Algorithm 1.1

For k = 1 to n do
◦sk = 0
◦For i = 1 to k do
◦sk = sk + ai

◦End For

• End For

Algorithm 1.2

• s1 = a1

For k = 2 to n do
◦sk = sk-1 + ak

• End For

What is the best one?

• Algorithm 1.1 takes approximately “n2/2” steps.

• Algorithm 1.2 takes approximately “n” steps.

Problem 2
Write an algorithm to find the intersection set C =
{c1, c2, c3, …, ch } between two sets A = {a1, a2, a3, …,
an } and B = {b1, b2, b3, …, bm }

(hint: ci belongs to C if ci belongs to A and ci
belongs to B).

Algorithm 2.1

For i = 1 to n do
◦For j = 1 to m do
◦ If ai equals to bj then

◦ Add ai to C

◦End If

◦End For

• End For

Algorithm 2.2
• Let two sets A and B are sorted.

• i = j =1

While (i ≤ n and j ≤ m) do
◦ If (ai = bj) then

◦ Add ai to C

◦ i = i + 1

◦ j = j + 1

◦ Else If (ai < bj)
◦ i = i + 1

◦ Else
◦ j = j + 1

◦ End If

◦ End If
• End While

What is the best one?

• Algorithm 2.1 takes approximately “n*m” steps.

• Algorithm 2.2 takes approximately “[n + m + (sorting
steps)]” steps.

Problem 3
Write a program that compute e for given number i .

You can approximate e using the following series:

(hint: i ! =i ×(i - 1) × ….. ×3×2×1).

Algorithm 3.1

Let e =1

For k = 1 to i do
◦ Let fact =1

◦ For j = 1 to k do
◦ fact = fact + j

◦ End For

◦ e = e +1/fact

• End For

Algorithm 3.2

• Let e =1
• Let fact =1

For k = 1 to i do
◦ fact = fact * k

◦ e = e +1/fact

• End For

27

?

