Design and Theory of Algorithms

Lecture 01

Books

PowerPoint

http://www.bu.edu.eg/staff/ahmedaboalatah14-courses/14767

Benha U	Jniversity s	Staff Settlefione:Ahmed Hassan Ahmed Abu El Atta	a (Le
Benha University Home	You are in: <u>Home/Courses/Auto</u> Ass. Lect. Ahmed Hassa Automata And Formal	mata and Formal Languages Back To Courses an Ahmed Abu El Atta :: Course Details: Languages	
التسغة العربية		add course edit course	
My C.V.	Course name	Automata and Formal Languages	RG
About	Level	Undergraduate	in
Publications	Last year taught	2018	1
Inlinks(Competition)	Course description	Not Uploaded	
Ineses			5
Reports Dublished books	Course password		ŭ.
Workshops / Conferences			Ŵ
Supervised PhD	Course files	add flies	6
Supervised MSc	Course URLs	add URLs	m
Supervised Projects	Course assignments	add assignments	ž
Education			š
Language skills	Course Exams &Model Answers	add exams	2
Academic Positions			edit)
Administrative Positions			

Introduction

Outline

Definitions

Algorithms

Problems

Course Objectives

Analysis of Algorithms

Examples

What is an Algorithm?

Well-defined computation procedure that takes some value, or a set of values as input and produces some value or a set of values as output

An algorithm is the thing that stays the same whether the program is in C,BASIC, etc.

An algorithm has to solve a general, specified problem.

What is a problem?

Problem Specification

- Specify what a typical input instance is
- Specify what the output should be in terms of the input instance

Example: Sorting

- Input: A sequence of "n" numbers a₁...a_n
- **Output**: the permutation (reordering) of the input sequence such that $a_{s(1)} \le a_{s(2)} \le ... \le a_{s(n)}$.

Types of Problems

Search: find X in the input satisfying property Y Max

Structuring: Transform input X to satisfy property Y Sort

Construction: Build X satisfying Y Scheduling

Optimization: Find the best X satisfying property Y TSP

Decision: Does X satisfy Y? Odd or Even

Adaptive: Maintain property Y over time. Insert in sorted list

Two desired properties of algorithms

Correctness

Always provides correct output when presented with legal input

Efficiency

What does efficiency mean?

Example: Odd Number

Input: A number n

Output: Yes if n is odd, no if n is even

Which of the following algorithms solves Odd Number best?

- Count up to that number from one and alternate naming each number as odd or even.
- Factor the number and see if there are any 2 in the factorization.
- Keep a lookup table of all numbers from 0 to the maximum integer.
- Look at the last bit (or digit) of the number.

Course Objectives

- **1**. Learning classic algorithms
- 2. How to devise correct and efficient algorithms for solving a given problem
- 3. How to express algorithms
- 4. How to analyze algorithms
- 5. How to prove (or at least indicate) no correct, efficient algorithm exists for solving a given problem

How to devise algorithms

Something of an art form

We will describe some general techniques and try to illustrate when each is appropriate

Expressing Algorithms

Implementations

Pseudo-code

English

Verifying algorithm correctness

- Proving an algorithm generates correct output for all inputs
- One technique covered in textbook
- Loop invariants

Examples

Problem 1

Write an algorithm to find set of prefix sums $S = \{s_1, s_2, ..., s_n\}$ for a set of "n" numbers $A = \{a_1, a_2, a_3, ..., a_n\}$

(hint: prefix sum
$$s_k = \sum_{i=1}^{k} a_i$$
).

Algorithm 1.1

- For k = 1 to n do
- $^{\circ}s_{k} = 0$
- •For i = 1 to k do
 - $\circ s_k = s_k + a_i$
- •End For
- End For

Algorithm 1.2

s₁ = a₁
For k = 2 to n do

 s_k = s_{k-1} + a_k

End For

What is the best one?

• Algorithm 1.1 takes approximately "n²/2" steps.

• Algorithm 1.2 takes approximately "n" steps.

Problem 2

Write an algorithm to find the intersection set C = $\{c_1, c_2, c_3, ..., c_h\}$ between two sets A = $\{a_1, a_2, a_3, ..., a_n\}$ and B = $\{b_1, b_2, b_3, ..., b_m\}$

(hint: c_i belongs to C if c_i belongs to A and c_i belongs to B).

Algorithm 2.1

For i = 1 to n do •For j = 1 to m do • If a_i equals to b_i then • Add a_i to C • End If • End For End For

Algorithm 2.2

- Let two sets A and B are sorted.
- i = j =1

While (i \leq n and j \leq m) do

- If (ai = bj) then
 - Add ai to C
 - i = i + 1
 - j = j + 1
- Else If (ai < bj)
 - i = i + 1
- Else
 - j = j + 1
- End If
- End If
- End While

What is the best one?

• Algorithm 2.1 takes approximately "n*m" steps.

Algorithm 2.2 takes approximately "[n + m + (sorting steps)]" steps.

Problem 3

Write a program that compute *e* for given number *i*.

You can approximate *e* using the following series:

$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots + \frac{1}{i!}$$

(hint: $\mathbf{i} = \mathbf{i} \times (\mathbf{i} - 1) \times \dots \times 3 \times 2 \times 1$).

Algorithm 3.1

Let *e* =1

- For k = 1 to *i* do
 - Let fact =1
 - For j = 1 to k do
 - fact = fact + j
 - End For
 - *e* = *e* +1/fact
- End For

Algorithm 3.2

- Let *e* =1
- Let fact =1
- For k = 1 to *i* do
 - o fact = fact * k
 - *e* = *e* +1/fact
- End For

